Cyclone: A set of Pure Data objects cloned from
Max/MSP

Cyclone expands Pure Data with objects cloned from cycling74's Max/MSP and
provides some good level of compatibility between the two environments.

Pure Data (or just "Pd") project is found at: https://sourceforge.net/p/pure-data/pure-
data/ci/master/tree/ or in its github mirror https://github.com/pure-data/pure-data. The official
download page is here: http://msp.ucsd.edu/software.html

Max is found at: https://cycling74.com/

Copyright © 2003-2025 - Krzysztof Czaja, Hans-Christoph Steiner, Fred Jan Kraan,
Alexandre Porres, Derek Kwan, Matt Barber and others.

This work is free. You can redistribute it and/or modify it under the terms of the BSD-3-
Clause (aka Revised BSD License). See License.txt hitps://github.com/porres/pd-
cyclone/blob/cyclone0.4/LICENSE.ixt and https://opensource.org/licenses/BSD-3-Clause for

more details.

Current Release: Cyclone 0.9-2 (this release needs at least Pd Vanilla 0.55-0)
Released March 14th 2025

Find Cyclone's latest releases at: https://github.com/porres/pd-cyclone/releases or directly
via Pd's external manager (Help => Find Externals). Please report bugs at
https://github.com/porres/pd-cyclone/issues.

About Cyclone:

Outdated versions of cyclone (0.1) are available in the long abandoned Pd-extended
distribution (which no one should be using now in the 2020's) as well as in Pd-l2ork and Purr
Data - both originally based on Pd-Extended but ported to nw.js (0.1 versions of cyclone here
were not fully ported to nw.js at the time of this writing). If you want an up to date version of
Cyclone, use Pd Vanilla or PlugData.

https://github.com/porres/pd-cyclone/blob/cyclone0.4/LICENSE.txt
https://opensource.org/licenses/BSD-3-Clause

Do you know about PlugData? Cyclone is also part of PlugData by Timothy Schoen, which is
a fork of Pd that loads as a standalone or VST with a revamped GUI. See:
https://github.com/timothyschoen/PlugData

The original author of Cyclone (Krzysztof Czaja) abandoned it in 2005 at version 0.1-
alphab5, when Cyclone was compatible to MAX 4.0. Cyclone was then incorporated and
available in Pd-extended, where it only a had a minor update under the maintenance of
Hans-Christoph Steiner in 2013 (0.1-alpha56), right before Pd-extended and Cyclone (by
consequence) were abandoned altogether (this 0.1-alpha56 version was also inherited by
Pd-12ork/Purr Data). Under a new maintenance phase by Fred Jan Kraan, 0.1-alpha57 and
Cyclone 0.2 beta versions were released, still closely related to the previous '0.1-alpha’
releases and mostly compliant to Max 4.0!

Cyclone 0.3-0 was the major overhaul in Cyclone, where almost all of its objects got updated
to the latest Max 7 version (Max 7.3.5). Many bugs were also fixed, the documentation was
rewritten from scratch and new objects were included. Check the provided CHANGELOG.txt
file for the details in all version changes.

Currently, Cyclone still hasn't reached full compatibility to "Max 7.3.5". Some functionalities
that depend on "transport" or "dictionaries" haven't been implemented and actually will never
be. Cyclone is not in much active development these days and the main goal is to maintain
the library, and fix bugs (hence avoid including newer things).

The main current maintainer of Cyclone (Porres) is much busier with developing the ELSE
library. Note that this library has alternatives for almost all cyclone objects and many objects
in ELSE are actually inspired by MAX/MSP objects that were not cloned in Cyclone. By the
way, ELSE is also part of PlugData, therefore, the documentation of Cyclone points to
alternatives in ELSE.

Some objects in Cyclone are now borrowed from ELSE, like [pink~], [tanh~] and comment.
These objects are backwards compatible and offer more stuff than the orginal MAX object,
so not really fully compatible.

The only object that hasn't been updated yet to MAX 7.3.5 is [mtr] and this is on the To Do
list. Cyclone may still incorporate new functionalities in existing objects from Max 8 (current
release) and newer 9+ versions in the future, but we can't promise it.

A 'mc' compatiblity would be possible now, as of Pd version 0.54-0, which supports
multichannel connections. Notwithstandingly, there's no plan to create such objects for
Cyclone and pursue this compatibility. On the other hand, users can currently build their own
"mc" like abstractions based on cyclone objetcs with [clone]. Please note that many ELSE
objects have multichannel support! The [tanh~] object in Cyclone is now the same on from
ELSE and has MC support, as an example.

https://github.com/timothyschoen/PlugData
file:///Users/alexandreporres/Desktop/git/pd-cyclone/this%20one%20based%20on%20ELSE's%20%5Bnote%5D%20and%20was%20actually%20deprecated

Installing Cyclone:

You can compile Cyclone from the source provided in this repository for the current bleeding
edge last state or download one of the more stable compiled releases from
https://github.com/porres/pd-cyclone/releases. A good alternative is simply to use Pd's own

external download manager (a.k.a deken plugin): just click on the "find externals" option
under the Help menu and search for "cyclone".

When installing cyclone, make sure the Cyclone folder is included in a folder that Pd
searches for, such as ~/Documents/Pd/externals - which is what Pd suggests you to
do for severl versions now.

Now you can install Cyclone by loading it in the startup: go to "Preferences => Startup", then
click "New", type "cyclone" and hit OK. Next time you restart Pd, the Cyclone library binary
will be loaded.

This library binary loads the non alphanumeric operators objects (which are: - , -~ |

1/, Y/~ , =~ %~ 4=~ <=~ , <~ ==~ >=-~ and >~)butitalso adds
Cyclone's path to Pd's preferences, so you can load the other objects from Cyclone (which
are separate binaries and abstractions).

But note that in order to actually force a path search priority in your patch, you need to use
[declare -path cyclone].

You can also use the [declare -lib cyclone] in a patch to load the library if you don't want to
always have Cyclone loaded when Pd starts. Loading the Cyclone binary as an object
([cyclone]) also loads the library, see its help file for more details.

Building Cyclone for Pd Vanilla:

Since "Cyclone 0.1-alpha57", the Cyclone package has relied on the new build system called
"pd-lib-builder" by Katja Vetter (check the project in: https://github.com/pure-data/pd-lib-
builder).

» Compiling with pdlibbuilder

PdLibBuilder tries to find the Pd source directory at several common locations, but when this
fails, you have to specify the path yourself using the pdincludepath variable. Example:

make pdincludepath=~/pd-0.54-0/src/ (for Windows/MinGW add 'pdbinpath=-~

 Make Install

Use "objectsdir" to set a relative path for your build, something like:

https://github.com/porres/pd-cyclone/releases
https://github.com/pure-data/pd-lib-builder

make install objectsdir=../cyclone-build

Then move it to your preferred install folder for Pd.

Building with CMake

It is now possible to build Cyclone for Pd Vanilla or libpd using CMake. CMake is a cross-
platform, open-source build system. CMake is used to control the software compilation
process using simple platform and compiler independent configuration files, and generate
native makefiles and workspaces that can be used in the compiler environment of your
choice. This allows native compilation via Windows (Microsoft Visual Studio), Linux (GCC)
and macOS (XCode).

» Dependencies:

o CMake: You can download for your platform here.
o Only on Windows: pthreads library
o Pure-data or libpd: sources and binaries.

If you are using MinGW, you can use the pthreadGC-3.dll included in the

maintenance/windows dl1 directory in this repository. Alternatively, you can also
download it or compile it yourself from the sources here. This will typically result in
pthreadGC2.(dll/lib).

If you are using Visual Studio, you need to provide a pthreads library compiled for Visual
Studio either by downloading it or compiling it yourself. See here. Be careful to download /
compile the right version for your setup. This would typically be

pthreadvC2.(d11/1lib) .

» Configuring the build

One way to configure CMake is to use the CMake GUI. The GUI will list the variables that
can be provided to configure the build. The variables can also be specified in the command-
line interface (See below for an example).

In this step you can select if you want to build shared libraries with BUILD SHARED LIBS
and if you want to build all Cyclone objects into one single library with
BUILD SINGLE LIBRARY (more on this below).

When using Microsoft Visual Studio (MSVC), you will be requested to provide a path to the
pthreads library and its headers using variables CMAKE_ THREAD LIBS INIT and
PTHREADS INCLUDE DIR .

You will be requested to provide a path to the pure-data sources and to the pure-data library.

https://cmake.org/
https://www.sourceware.org/pthreads-win32/
https://www.sourceware.org/pthreads-win32/
https://cmake.org/runningcmake/

If building Cylone for libpd, these can also be satisfied by providing the path to the
pure-data folder inside the libpd sources and providing the path to the libpd library. The
variables are: PD_INCLUDE DIR and PD LIBRARY .

On macOS, you can define different deployment target and architectures from your current
system using the variables CMAKE OSX DEPLOYMENT TARGET and
CMAKE OSX ARCHITECTURES .

You can specify additional compilation flags using the variable CMAKE C_FLAGS .
CMake can now generate Makefiles, a MSVC solution, or an XCode project.
 Building

After generation, depending on your platform you can navigate to the directory where CMake
generated the build files and then:

e On Linux: run make
» On Windows: open the MSVC solution and build it
+ On macOS: open the XCode project and build it

Of course you can also use CMake itself to build cyclone by running this on the command
line:

cd <path/to/build/files/generated/by/CMake>
cmake --build .

 Building a single library

Per default Cyclone will build most of its objects as a single binary file (.so / .d11 /
.dylib / .pd darwin). The exception is the "cyclone" object/binary that loads the non
alphanumeric operators objects (whichare: - , t—~ 1/ | 1/~ 1=~ %~ |

If you want you can also build all of the Cyclone objects into one
cyclone.so/dll/dylib/pd darwin Dby activatingthe BUILD SINGLE LIBRARY
option.

Each one of the individual libraries contain a <name> setup() method that will be
invoked by pure-data on library load. If you select the BUILD SINGLE LIBRARY , CMake
will generate the appropriate code so that all * setup() methods will be invoked in the
main cyclone setup() .

« Command-line examples

Here are a few examples of how to download, configure and build the latest Cyclone on the

https://github.com/pure-data/pure-data/blob/5526f7d08db7fe5d48884e1cb4b0f53fa79197ae/src/s_loader.c#L116

command line using CMake and pure-data or libpd.

Linux:

git clone https://github.com/pure-data/pure-data

<download pure-data binaries or build it yourself>

git clone https://github.com/porres/pd-cyclone

cd pd-cyclone

mkdir build && cd build

cmake .. -DPD_INCLUDE DIR:PATH=pure-data/src -DPD_ LIBRARY:PATH=<path/to/]
cmake --build

Windows / MSVC:

git clone https://github.com/pure-data/pure-data
<download pure-data binaries or build it yourself>

#Clone the Cyclone repository from GitHub:

git clone https://github.com/porres/pd-cyclone

cd pd-cyclone

mkdir build && cd build

cmake .. -DCMAKE THREAD LIBS INIT:PATH=</path/to/pthreadsvVC2.lib> -DPTHRI
cmake --build

Using libpd in Linux:

Here we compile libpd ourselves, you can skip the building steps if you
git clone https://github.com/libpd/libpd

cd libpd

git submodule init

git submodule update

libpd build steps:

mkdir build && cd build

cmake

cmake --build

cd ../..

Now clone the Cyclone repository

git clone https://github.com/porres/pd-cyclone

cd pd-cyclone

mkdir build && cd build

cmake .. -DPD INCLUDE DIR:PATH=../libpd/pure-data/src -DPD_ LIBRARY:PATH=
cmake --build

A Brief History of Cyclone's Development:

Excerpt from Cyclone's original Readme (by its original author Krzysztof Czaja):

« "Cyclone is a library of Pure Data classes, bringing some level of compatibility between
Max/MSP and Pd environments. Although being itself in the early stage of development,
it is meant to eventually become part of a much larger project, aiming at unification and
standardization of computer musician's tools. In its current form, cyclone is mainly for
people using both Max and Pd, and thus wanting to develop cross-platform patches.
(...)." The full original readme is provided in this repository at:
https://github.com/porres/pd-cyclone/blob/master/maintenance/README _ original.txt

Cyclone's original author Krzysztof Czaja worked on it as part of his miXed library from 2002
to 2005 and later abandoned it all together. In parallel, miXed had been incorporated into Pd
Extended and eventually ended up under the maintenance of Hans-Christoph Steiner - the
main developer and maintainer of Pd-Extended. When Pd Extended was abandoned after its
last release (from Jan 2013), Cyclone and miXed were left unmaintained as a result. In Dec-
2014, Fred Jan Kraan took over maintenance and development for cyclone (but not the rest
of the miXed library) and released 0.1-alpha57 and Cyclone 0.2 beta versions, but decided
to abandon development for it in Feb-2016.

Since February 21st 2016, further development for Cyclone started on this repository by
Alexandre Porres, Derek Kwan, Matt Barber and other collaborators. The first stable release
was Cyclone 0.3-0 from february 2019!

About Cyclone's Repositories and its Fork History:

=> Original Repository (up to version 0.1-Alpha-56): The original repository of MiXed as part
of Pd Extended - containing Cyclone and more (such as 'toxy') - resides at
https://svn.code.sf.net/p/pure-data/svn/trunk/externals/miXed/cyclone and the migrated

repository: https://git.puredata.info/cgit/svn2git/libraries/miXed.git/. This repository embraces

work from three different maintenance phases:

o Czaja's era (until 2005 and up to 0.1-Alpha55): Czaja (the original author) worked on
Cyclone from version 01-alpha-01 (2002) to 0.1-alpha-55 (2005).

» Hans era (until 2013 and 0.1-Alpha-56): Hans maintained Cyclone from 2005 to 2013.
The 0.1-Alpha55 version of Cyclone is found in most of Pd-Extended versions up to Pd-
Extended 0.42-5. The last release of Pd-Extended is 0.43-4 from Jan-2013 and it
carries the 0.1-Alpha56 version of Cyclone, which can also be found as "cyclone-vO-
Oextended" when searching for externals in Pd Vanilla.

» Kraan era (up to 2015): The later work in this repository was not made available into a
new release from this repository.

https://github.com/porres/pd-cyclone/blob/master/maintenance/README_original.txt
https://svn.code.sf.net/p/pure-data/svn/trunk/externals/miXed/cyclone
https://git.puredata.info/cgit/svn2git/libraries/miXed.git/

=> Fred Jan Kraan's Repository (0.1-Alpha57 and 0.2-beta):

Fred Jan Kraan forked the original repository to htips://github.com/electrickery/pd-miXedSon,

but containing only the Cyclone library. This repository has a few releases - see
https://github.com/electrickery/pd-miXedSon/releases - it starts with Cyclone version 0.1-
alpha-57, from October 2015, which is basically the last developments made on the original
repository in its last phase. Then it moves on to a new Cyclone 0.2 version which stopped at
a beta stage in february 2016.

=> This Repository (0.3-0 and onwards):

In February 2016, Porres forked from https://github.com/electrickery/pd-miXedSon to this
repository that resides at: https://github.com/porres/pd-cyclone. The fork happened while
cyclone was at 0.2-beta stage. Since then, Alexandre Porres, Derek Kwan, Matt Barber and
other collaborators have worked on further developments of cyclone. The first stable release
from this repository was cyclone 0.3-0 from february 2019. In late 2021, after the release of
version 0.6-0, this repository was detached from Kraan's (electrickery) here on GitHub, after
being thousands of commits ahead and with a completely restructure of the code base.

=> The 'nilwind' fork:

The 'nilwind' library is a fork of Cyclone and it starts as a fork of the last stage
https://github.com/electrickery/pd-miXedSon was left at, meaning it is a is a development

over cyclone 0.2-beta. The nilwind's repository is at https://github.com/electrickery/pd-
nilwind. Its first release is 'nilwind 0.2.1', from November 2019. This fork of cyclone does not
aim to pursue updates according to newer versions of Max and its main concern is to keep
compatibility to old/legacy patches made in the Pd-Extended era (which carried cyclone 0.1).
Nonetheless, versions of cyclone 0.3 onward are also compatible to Pd-Extended era, as the
current development phase does not introduce breaking changes and has only offered stable
releases since 0.3!

About This Repository's Goals:

This repository resides at https://github.com/porres/pd-cyclone and is faithful to the original

goal of Cyclone in creating an external Pd package with a collection of objects cloned and
compatible to Max/MSP objects. Bugs and issues should be reported to
https://github.com/porres/pd-cyclone/issues. Releases from this repository are stable and

offer many fixes and improves stability from earlier versions.

Compatibility to newer versions of Max is a concern, but Max compatibility was always the
main goal of cyclone and nothing really changed, since Max itself keeps backwards
compatibilities. No incompatibilities should arise between cyclone 0.3-0 onwards with the
legacy stage of the library (the cyclone 0.1 phase that was available in Pd Extended). Since

https://github.com/electrickery/pd-miXedSon
https://github.com/electrickery/pd-miXedSon
https://github.com/porres/pd-cyclone
https://github.com/porres/pd-cyclone/issues

this development stage of Cyclone is concerned to provide compatibility for patches made in
the Pd-Extended era, if such issues arise, they should be treated as bugs and reported/fixed.

Collaborating to Cyclone:

This repository/project is open to collaboration to anyone who wishes to work (keeping in
mind the key and central goal of Max/MSP compatibility). Feel free to collaborate.

Acknowledgements:

Thanks to previous maintainers, Lucas Cordiviola for working on compilation and cross
compilation issues and generating binaries for many releases. Diego Barrios Romero worked
on the possibility of compiling all of objects in cyclone as a single binary instead of separate
binaries. Tim Schoen for helping with some issues, including a couple of objects and
including Cyclone in his PlugData project (see: hitps://github.com/timothyschoen/PlugData)

https://github.com/timothyschoen/PlugData

